LanceDB provides support for full-text search via Lance, allowing you to incorporate keyword-based search (based on BM25) in your retrieval solutions.
Basic Usage
Consider that we have a LanceDB table named my_table
, whose string column text
we want to index and query via keyword search, the FTS index must be created before you can search via keywords.
Table setup
First, open or create the table you want to search:
import lancedb
from lancedb.index import FTS
uri = "data/sample-lancedb"
db = lancedb.connect(uri)
table = db.create_table(
"my_table_fts",
data=[
{"vector": [3.1, 4.1], "text": "Frodo was a happy puppy"},
{"vector": [5.9, 26.5], "text": "There are several kittens playing"},
],
)
import * as lancedb from "@lancedb/lancedb";
const uri = "data/sample-lancedb"
const db = await lancedb.connect(uri);
const data = [
{ vector: [3.1, 4.1], text: "Frodo was a happy puppy" },
{ vector: [5.9, 26.5], text: "There are several kittens playing" },
];
const tbl = await db.createTable("my_table", data, { mode: "overwrite" });
let uri = "data/sample-lancedb";
let db = connect(uri).execute().await?;
let initial_data: Box<dyn RecordBatchReader + Send> = create_some_records()?;
let tbl = db
.create_table("my_table", initial_data)
.execute()
.await?;
Construct FTS Index
Create a full-text search index on your text column:
table.create_fts_index("text")
await tbl.createIndex("text", {
config: lancedb.Index.fts(),
});
tbl
.create_index(&["text"], Index::FTS(FtsIndexBuilder::default()))
.execute()
.await?;
Full Text Search
Perform the search and retrieve results:
results = table.search("puppy")
.limit(10)
.select(["text"])
.to_list()
# [{'text': 'Frodo was a happy puppy', '_score': 0.6931471824645996}]
const results = await tbl
.search("puppy", "fts")
.select(["text"])
.limit(10)
.toArray();
let results = tbl
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["text".to_owned()]))
.limit(10)
.execute()
.await?;
The search is conducted on all indexed columns by default, so it’s useful when there are multiple indexed columns.
If you want to specify which columns to search use fts_columns="text"
str
. If you provide a vector as input, LanceDB will search the ANN index instead.
Advanced Usage
Tokenize Table Data
By default, the text is tokenized by splitting on punctuation and whitespaces, and would filter out words that are longer than 40 characters. All words are converted to lowercase.
Stemming is useful for improving search results by reducing words to their root form, e.g. “running” to “run”. LanceDB supports stemming for multiple languages. You should set the language
parameter rather than tokenizer_name
because you cannot customize the tokenizer if tokenizer_name
is specified.
For example, to enable stemming for English:
table.create_fts_index("text", language="English", replace=True)
The following languages are currently supported.
The tokenizer is customizable, you can specify how the tokenizer splits the text, and how it filters out words, etc.
Default index parameters:
language
: Englishwith_position
: falsemax_token_length
: 40lower_case
: truestem
: trueremove_stop_words
: trueascii_folding
: true
For example, for language with accents, you can specify the tokenizer to use ascii_folding
to remove accents, e.g. ‘é’ to ’e’:
table.create_fts_index(
"text",
language="French",
stem=True,
ascii_folding=True,
replace=True,
)
Filtering Options
LanceDB full text search supports to filter the search results by a condition, both pre-filtering and post-filtering are supported.
This can be invoked via the familiar where
syntax.
With pre-filtering:
table.search("puppy").limit(10).where("text='foo'", prefilter=True).to_list()
await tbl
.search("puppy")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(true)
.toArray();
table
.query()
.full_text_search(FullTextSearchQuery::new("puppy".to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
With post-filtering:
table.search("puppy").limit(10).where("text='foo'", prefilter=False).to_list()
await tbl
.search("apple")
.select(["id", "doc"])
.limit(10)
.where("meta='foo'")
.prefilter(false)
.toArray();
table
.query()
.full_text_search(FullTextSearchQuery::new(words[0].to_owned()))
.select(lancedb::query::Select::Columns(vec!["doc".to_owned()]))
.postfilter()
.limit(10)
.only_if("meta='foo'")
.execute()
.await?;
Phrase vs. Terms Queries
OR
, AND
in the search string.
For full-text search you can specify either a phrase query like "the old man and the sea"
,
or a terms search query like old man sea
. For more details on the terms
query syntax, see Tantivy’s
query parser rules
.
To search for a phrase, the index must be created with with_position=True
and remove_stop_words=False
:
table.create_fts_index("text", with_position=True, replace=True)
This will allow you to search for phrases, but it will also significantly increase the index size and indexing time.
Fuzzy Search
Fuzzy search allows you to find matches even when the search terms contain typos or slight variations. LanceDB uses the classic Levenshtein distance to find similar terms within a specified edit distance.
Parameter | Type | Default | Description |
---|---|---|---|
fuzziness | int | 0 | Maximum edit distance allowed for each term. If not specified, automatically set based on term length: 0 for length ≤ 2, 1 for length ≤ 5, 2 for length > 5 |
max_expansions | int | 50 | Maximum number of terms to consider for fuzzy matching. Higher values may improve recall but increase search time |
Let’s create a sample table and build full-text search indices to demonstrate fuzzy search capabilities and relevance boosting features.
Example: Fuzzy Search
Generate Data
First, let’s create a table with sample text data for testing fuzzy search:
import lancedb
import numpy as np
import pandas as pd
import random
# Connect to LanceDB
db = lancedb.connect(
uri="db://your-project-slug",
api_key="your-api-key",
region="us-east-1"
)
# Generate sample data
table_name = "fts-fuzzy-boosting-test"
vectors = [np.random.randn(128) for _ in range(100)]
text_nouns = ("puppy", "car")
text2_nouns = ("rabbit", "girl", "monkey")
verbs = ("runs", "hits", "jumps", "drives", "barfs")
adv = ("crazily.", "dutifully.", "foolishly.", "merrily.", "occasionally.")
adj = ("adorable", "clueless", "dirty", "odd", "stupid")
# Generate random text combinations
text = [
" ".join([
text_nouns[random.randrange(0, len(text_nouns))],
verbs[random.randrange(0, 5)],
adv[random.randrange(0, 5)],
adj[random.randrange(0, 5)],
])
for _ in range(100)
]
text2 = [
" ".join([
text2_nouns[random.randrange(0, len(text2_nouns))],
verbs[random.randrange(0, 5)],
adv[random.randrange(0, 5)],
adj[random.randrange(0, 5)],
])
for _ in range(100)
]
count = [random.randint(1, 10000) for _ in range(100)]
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
// Generate sample data
const tableName = "fts-fuzzy-boosting-test-ts";
const n = 100;
const vectors = Array.from({ length: n }, () =>
Array.from({ length: 128 }, () => Math.random() * 2 - 1)
);
const textNouns = ["puppy", "car"];
const text2Nouns = ["rabbit", "girl", "monkey"];
const verbs = ["runs", "hits", "jumps", "drives", "barfs"];
const adverbs = ["crazily", "dutifully", "foolishly", "merrily", "occasionally"];
const adjectives = ["adorable", "clueless", "dirty", "odd", "stupid"];
// Generate random text combinations
const generateText = (nouns: string[]) => {
const noun = nouns[Math.floor(Math.random() * nouns.length)];
const verb = verbs[Math.floor(Math.random() * verbs.length)];
const adv = adverbs[Math.floor(Math.random() * adverbs.length)];
const adj = adjectives[Math.floor(Math.random() * adjectives.length)];
return `${noun} ${verb} ${adv} ${adj}`;
};
const text = Array.from({ length: n }, () => generateText(textNouns));
const text2 = Array.from({ length: n }, () => generateText(text2Nouns));
const count = Array.from({ length: n }, () => Math.floor(Math.random() * 10000) + 1);
Create Table
# Create table with sample data
table = db.create_table(
table_name,
data=pd.DataFrame({
"vector": vectors,
"id": [i % 2 for i in range(100)],
"text": text,
"text2": text2,
"count": count,
}),
mode="overwrite"
)
// Create table with sample data
const data = makeArrowTable(
vectors.map((vector, i) => ({
vector,
id: i % 2,
text: text[i],
text2: text2[i],
count: count[i],
}))
);
const table = await db.createTable(tableName, data, { mode: "overwrite" });
Construct FTS Index
Create a full-text search index on the first text column:
# Create FTS index on first text column
table.create_fts_index("text")
wait_for_index(table, "text_idx")
// Create FTS index on first text column
await table.createIndex("text", { config: Index.fts() });
await waitForIndex(table, "text_idx");
Then, create an index on the second text column:
# Create FTS index on second text column
table.create_fts_index("text2")
wait_for_index(table, "text2_idx")
// Create FTS index on second text column
await table.createIndex("text2", { config: Index.fts() });
await waitForIndex(table, "text2_idx");
Basic and Fuzzy Search
Now we can perform basic, fuzzy, and prefix match searches:
Basic Exact Search
from lancedb.query import MatchQuery
# Basic match (exact search)
basic_match_results = (
table.search(MatchQuery("crazily", "text"))
.select(["id", "text"])
.limit(100)
.to_pandas()
)
import { MatchQuery } from "@lancedb/lancedb";
// Basic match (exact search)
const basicMatchResults = await table.query()
.fullTextSearch(new MatchQuery("crazily", "text"))
.select(["id", "text"])
.limit(100)
.toArray();
Fuzzy Search with Typos
# Fuzzy match (allows typos)
fuzzy_results = (
table.search(MatchQuery("craziou", "text", fuzziness=2))
.select(["id", "text"])
.limit(100)
.to_pandas()
)
// Fuzzy match (allows typos)
const fuzzyResults = await table.query()
.fullTextSearch(new MatchQuery("craziou", "text", {
fuzziness: 2,
}))
.select(["id", "text"])
.limit(100)
.toArray();
Prefix based Match
Prefix-based match allows you to search for documents containing words that start with a specific prefix.
# Fuzzy match (allows typos)
fuzzy_results = (
table.search(MatchQuery("cra", "text", prefix_length=3))
.select(["id", "text"])
.limit(100)
.to_pandas()
)
// Fuzzy match (allows typos)
const fuzzyResults = await table.query()
.fullTextSearch(new MatchQuery("cra", "text", {
prefixLength: 3,
}))
.select(["id", "text"])
.limit(100)
.toArray();
Phrase Match
Phrase matching enables you to search for exact sequences of words. Unlike regular text search which matches individual terms independently, phrase matching requires words to appear in the specified order with no intervening terms.
Phrase matching is particularly useful for:
- Searching for specific multi-word expressions
- Matching exact titles or quotes
- Finding precise word combinations in a specific order
# Exact phrase match
from lancedb.query import PhraseQuery
print("\n1. Exact phrase match for 'puppy runs':")
phrase_results = (
table.search(PhraseQuery("puppy runs", "text"))
.select(["id", "text"])
.limit(100)
.to_pandas()
)
import { PhraseQuery } from "@lancedb/lancedb";
// Exact phrase match
console.log("\n1. Exact phrase match for 'puppy runs':");
const phraseResults = await table.query()
.fullTextSearch(new PhraseQuery("puppy runs", "text"))
.select(["id", "text"])
.limit(100)
.toArray();
Flexible Phrase Match
To provide more flexible phrase matching, LanceDB supports the slop
parameter. This allows you to match phrases where the terms appear close to each other, even if they are not directly adjacent or in the exact order, as long as they are within the specified slop
value.
For example, the phrase query “puppy merrily” would not return any results by default. However, if you set slop=1
, it will match phrases like “puppy jumps merrily”, “puppy runs merrily”, and similar variations where one word appears between “puppy” and “merrily”.
# Flexible phrase match with slop=1 for 'puppy merrily'
from lancedb.query import PhraseQuery
print("\n1. Flexible phrase match for 'puppy merrily' with slop=1:")
phrase_results = (
table.search(PhraseQuery("puppy merrily", "text", slop=1))
.select(["id", "text"])
.limit(100)
.to_pandas()
)
import { PhraseQuery } from "@lancedb/lancedb";
// Flexible phrase match with slop=1 for 'puppy runs'
console.log("\n1. Flexible phrase match for 'puppy runs' with slop=1:");
const phraseResults = await table.query()
.fullTextSearch(new PhraseQuery("puppy runs", "text", { slop: 1 }))
.select(["id", "text"])
.limit(100)
.toArray();
Search with Boosting
Boosting allows you to control the relative importance of different search terms or fields in your queries. This feature is particularly useful when you need to:
- Prioritize matches in certain columns
- Promote specific terms while demoting others
- Fine-tune relevance scoring for better search results
Parameter | Type | Default | Description |
---|---|---|---|
positive | Query | required | The primary query terms to match and promote in results |
negative | Query | required | Terms to demote in the search results |
negative_boost | float | 0.5 | Multiplier for negative matches (lower values = stronger demotion) |
from lancedb.query import MatchQuery, BoostQuery, MultiMatchQuery
# Boost data with 'runs' in text more than 'puppy' in text
print("\n2. Boosting data with 'runs' in text:")
boosting_results = (
table.search(
BoostQuery(
MatchQuery("runs", "text"),
MatchQuery("puppy", "text"),
negative_boost=0.2,
),
)
.select(["id", "text"])
.limit(100)
.to_pandas()
)
"""Test searching across multiple fields."""
print("\n=== Multi Match Query Examples ===")
# Search across both text and text2
print("\n1. Searching 'crazily' in both text and text2:")
multi_match_results = (
table.search(MultiMatchQuery("crazily", ["text", "text2"]))
.select(["id", "text", "text2"])
.limit(100)
.to_pandas()
)
# Search with field boosting
print("\n2. Searching with boosted text2 field:")
multi_match_boosting_results = (
table.search(
MultiMatchQuery("crazily", ["text", "text2"], boosts=[1.0, 2.0]),
)
.select(["id", "text", "text2"])
.limit(100)
.to_pandas()
)
import { MatchQuery, BoostQuery, MultiMatchQuery } from "@lancedb/lancedb";
// Boosting Example
console.log("\n2. Boosting data with 'runs' in text:");
const boostingResults = await table.query()
.fullTextSearch(new BoostQuery(new MatchQuery("runs", "text"), new MatchQuery("puppy", "text"), {
negativeBoost: 0.2,
}))
.select(["id", "text"])
.limit(100)
.toArray();
// Multi Match Query Examples
console.log("\n=== Multi Match Query Examples ===");
// Search across both text fields
console.log("\n1. Searching 'crazily' in both text and text2:");
const multiMatchResults = await table.query()
.fullTextSearch(new MultiMatchQuery("crazily", ["text", "text2"]))
.select(["id", "text", "text2"])
.limit(100)
.toArray();
// Search with field boosting
console.log("\n2. Searching with boosted text2 field:");
const multiMatchBoostingResults = await table.query()
.fullTextSearch(new MultiMatchQuery("crazily", ["text", "text2"], {
boosts: [1.0, 2.0],
}))
.select(["id", "text", "text2"])
.limit(100)
.toArray();
- Use fuzzy search when handling user input that may contain typos or variations
- Apply field boosting to prioritize matches in more important columns
- Combine fuzzy search with boosting for robust and precise search results
Recommendations for optimal FTS performance:
- Create full-text search indices on text columns that will be frequently searched
- For hybrid search combining text and vectors, see our hybrid search guide
- For performance benchmarks, check our benchmark results
- For complex queries, use SQL to combine FTS with other filter conditions
Boolean Queries
LanceDB supports boolean logic in full-text search, allowing you to combine multiple queries using and
and or
operators. This is useful when you want to match documents that satisfy multiple conditions (intersection) or at least one of several conditions (union).
Combining Two Match Queries
In Python, you can combine two MatchQuery objects using either the and
function or the &
operator (e.g., MatchQuery("puppy", "text") and MatchQuery("merrily", "text")
); both methods are supported and yield the same result. Similarly, you can use either the or
function or the |
operator to perform an or query.
In TypeScript, boolean queries are constructed using the BooleanQuery
class with a list of [Occur, subquery] pairs. For example, to perform an AND query:
BooleanQuery([
[Occur.Must, new MatchQuery("puppy", "text")],
[Occur.Must, new MatchQuery("merrily", "text")],
])
This approach allows you to specify complex boolean logic by combining multiple subqueries with different Occur values (such as Must
, Should
, or MustNot
).
SHOULD
or MUST
clause. Queries that contain only a MUST_NOT
clause are not allowed.
from lancedb.query import MatchQuery
# Example: Find documents containing both "puppy" and "merrily"
and_query = MatchQuery("puppy", "text") & MatchQuery("merrily", "text")
and_results = (
table.search(and_query)
.select(["id", "text"])
.limit(100)
.to_pandas()
)
print("\nDocuments containing both 'puppy' and 'merrily':")
print(and_results)
# Example: Find documents containing either "puppy" or "merrily"
or_query = MatchQuery("puppy", "text") | MatchQuery("merrily", "text")
or_results = (
table.search(or_query)
.select(["id", "text"])
.limit(100)
.to_pandas()
)
print("\nDocuments containing either 'puppy' OR 'merrily':")
print(or_results)
import { MatchQuery, BooleanQuery, Occur } from "@lancedb/lancedb";
// Flexible boolean queries with MatchQuery
// Find documents containing both "puppy" and "merrily"
const mustResults = await table
.search(
new BooleanQuery([
[Occur.Must, new MatchQuery("puppy", "text")],
[Occur.Must, new MatchQuery("merrily", "text")],
]),
)
.select(["id", "text"])
.limit(100)
.toArray();
console.log("\nDocuments containing both 'puppy' and 'merrily':");
console.log(mustResults);
// Find documents containing either "puppy" or "merrily"
const shouldResults = await table
.search(
new BooleanQuery([
[Occur.Should, new MatchQuery("puppy", "text")],
[Occur.Should, new MatchQuery("merrily", "text")],
]),
)
.select(["id", "text"])
.limit(100)
.toArray();
console.log("\nDocuments containing either 'puppy' or 'merrily':");
console.log(shouldResults);
- Use
and
/&
(Python),Occur.Must
(Typescript) for intersection (documents must match all queries). - Use
or
/|
(Python),Occur.Should
(Typescript) for union (documents must match at least one query).
Full-Text Search on Array Fields
LanceDB supports full-text search on string array columns, enabling efficient keyword-based search across multiple values within a single field (e.g., tags, keywords).
Setting Up the Connection
Connect to your LanceDB instance:
import lancedb
# Connect to LanceDB
db = lancedb.connect(
uri="db://your-project-slug",
api_key="your-api-key",
region="us-east-1"
)
import * as lancedb from "@lancedb/lancedb"
const db = await lancedb.connect({
uri: "db://your-project-slug",
apiKey: "your-api-key",
region: "us-east-1"
});
Defining the Schema
Create a schema that includes an array field for tags:
table_name = "fts-array-field-test"
schema = pa.schema([
pa.field("id", pa.string()),
pa.field("tags", pa.list_(pa.string())),
pa.field("description", pa.string())
])
const tableName = "fts-array-field-test-ts";
// Create schema
const schema = new Schema([
new Field("id", new Utf8(), false),
new Field("tags", new List(new Field("item", new Utf8()))),
new Field("description", new Utf8(), false)
]);
Creating Sample Data
Generate sample data with array fields containing tags:
# Generate sample data
data = {
"id": [f"doc_{i}" for i in range(10)],
"tags": [
["python", "machine learning", "data science"],
["deep learning", "neural networks", "AI"],
["database", "indexing", "search"],
["vector search", "embeddings", "AI"],
["full text search", "indexing", "database"],
["python", "web development", "flask"],
["machine learning", "deep learning", "pytorch"],
["database", "SQL", "postgresql"],
["search engine", "elasticsearch", "indexing"],
["AI", "transformers", "NLP"]
],
"description": [
"Python for data science projects",
"Deep learning fundamentals",
"Database indexing techniques",
"Vector search implementations",
"Full-text search guide",
"Web development with Python",
"Machine learning with PyTorch",
"Database management systems",
"Search engine optimization",
"AI and NLP applications"
]
}
// Generate sample data
const data = makeArrowTable(
Array(10).fill(0).map((_, i) => ({
id: `doc_${i}`,
tags: [
["python", "machine learning", "data science"],
["deep learning", "neural networks", "AI"],
["database", "indexing", "search"],
["vector search", "embeddings", "AI"],
["full text search", "indexing", "database"],
["python", "web development", "flask"],
["machine learning", "deep learning", "pytorch"],
["database", "SQL", "postgresql"],
["search engine", "elasticsearch", "indexing"],
["AI", "transformers", "NLP"]
][i],
description: [
"Python for data science projects",
"Deep learning fundamentals",
"Database indexing techniques",
"Vector search implementations",
"Full-text search guide",
"Web development with Python",
"Machine learning with PyTorch",
"Database management systems",
"Search engine optimization",
"AI and NLP applications"
][i]
})),
{ schema }
);
Creating the Table and Adding Data
Create the table and populate it with the sample data:
# Create table and add data
table = db.create_table(table_name, schema=schema, mode="overwrite")
table_data = pa.Table.from_pydict(data, schema=schema)
table.add(table_data)
// Create table
const table = await db.createTable(tableName, data, { mode: "overwrite" });
console.log(`Created table: ${tableName}`);
Building the Full-Text Search Index
Create an FTS index on the tags column to enable efficient text search:
# Create FTS index
table.create_fts_index("tags")
wait_for_index(table, "tags_idx")
// Create FTS index
console.log("Creating FTS index on 'tags' column...");
await table.createIndex("tags", {
config: Index.fts()
});
// Wait for index
const ftsIndexName = "tags_idx";
await waitForIndex(table, ftsIndexName);
Performing Fuzzy Search
Search for terms with typos using fuzzy matching:
# Search examples
print("\nSearching for 'learning' in tags with a typo:")
result = (
table.search(MatchQuery("learnin", column="tags", fuzziness=1))
.select(['id', 'tags', 'description'])
.to_arrow()
)
// Search examples
console.log("\nSearching for 'learning' in tags with a typo:");
const fuzzyResults = await table.query()
.fullTextSearch(new MatchQuery("learnin", "tags", {
fuzziness: 2,
}))
.select(["id", "tags", "description"])
.toArray();
console.log(fuzzyResults);
Performing Phrase Search
Search for exact phrases within the array fields:
print("\nSearching for 'machine learning' in tags:")
result = (
table.search(PhraseQuery("machine learning", column="tags"))
.select(['id', 'tags', 'description'])
.to_arrow()
)
console.log("\nSearching for 'machine learning' in tags:");
const phraseResults = await table.query()
.fullTextSearch(new PhraseQuery("machine learning", "tags"))
.select(["id", "tags", "description"])
.toArray();
console.log(phraseResults);