Why Multimodal Data Needs a Better Lakehouse? — Download the Research Study
logo
  • Pricing
  • Docs
  • Blog
CtrlK
Press Ctrl+K or / to focus search. Use arrow keys to navigate suggestions, Enter to select, Escape to close.
Log in Sign up
  • Pricing
  • Docs
  • Blog

Social media

Sign up

App Gallery

/

  • Get Started
  • Quickstart
    • Basic Usage
    • Ingesting Data
  • What is LanceDB?
    • Lance Format
    • Feature Catalog
  • LanceDB Cloud
  • LanceDB Enterprise
    • Benefits
    • Architecture
    • Benchmarks
    • Deployment
      • Azure
    • Security
  • API & SDK Reference
  • User Guides
  • Working with Tables
    • Table Management
    • Working with Data
    • Versioning Tables
    • Table Schema
    • Table Consistency
  • Indexing Data
    • Vector Index
    • Full-Text Index
    • Scalar Index
    • GPU Indexing
    • Reindexing
  • Building Queries
    • Vector Search
    • Multivector Search
    • Full-Text Search
    • Hybrid Search
    • Filtering
    • SQL Queries
    • Query Optimization
  • Reranking Results
    • Custom Rerankers
    • Reranking Evaluation
  • Embedding Data
    • Quickstart
  • Storage Options
    • Configuring Storage
  • Feature Engineering
    • Overview
    • Using UDFs
      • Blobs
    • Job Execution
      • Backfilling
      • Startup Optimizations
      • Materialized Views
      • Contexts
      • Performance
    • Deployment
      • Troubleshooting
    • Geneva Python SDK
  • Build Apps
  • App Gallery
    • SemanticDotArt
    • Wikipedia 41M Hybrid Search
  • Tutorials
    • RAG
      • Time-Travel RAG
    • Vector Search
    • Retrieval
      • Multi-vector search: Needle in a Haystack
    • Feature Engineering
    • Agents
      • Recipe Agent
  • Integrations
    • Platforms
    • Frameworks
    • Reranking
    • Embeddings
  • Support
  • Troubleshooting
  • Changelog
  • FAQ
    • LanceDB OSS
    • LanceDB Cloud
    • LanceDB Enterprise
/ LanceDB Documentation / App Gallery / Edit on GitHub

Live Demos of LanceDB in Production

Interactive demonstrations and examples of LanceDB in action

SemanticDotArt

SemanticDotArt

SemanticDotArt turns real, human-made art discovery into a multimodal search experience, using feelings, phrases, and images using LanceDB hybrid search and semantic routing

MultimodalHybrid SearchSemantic Routing
Wikipedia 41M Hybrid Search

Wikipedia 41M Hybrid Search

Interactive hybrid search, FTS and vector search demo with 41M+ Wikipedia entries. Explore the power of combining FTS with vector search for enhanced search.

Hybrid SearchVector SearchFTS
logo

LanceDB is the first open-source AI-Native Multimodal Lakehouse.

Lancedb

  • LanceDB Cloud
  • Pricing

Resources

  • Blog
  • Documentation
  • Careers
  • Support

Legal

  • Terms
  • Policy

© 2025 LanceDB Inc. All rights reserved.

Certifications: