Optimize Query Performance in LanceDB

LanceDB provides two powerful tools for query analysis and optimization: explain_plan and analyze_plan. Let’s take a better look at how they work:

Method Purpose Description
explain_plan Query Analysis Print the resolved query plan to understand how the query will be executed. Helpful for identifying slow queries or unexpected query results.
analyze_plan Performance Tuning Execute the query and return a physical execution plan annotated with runtime metrics including execution time, number of rows processed, and I/O stats. Essential for performance tuning and debugging.

Query Analysis Tools

explain_plan

Reveals the logical query plan before execution, helping you identify potential issues with query structure and index usage. This tool is useful for:

  • Verifying query optimization strategies
  • Validating index selection
  • Understanding query execution order
  • Detecting missing indices

analyze_plan

Executes the query and provides detailed runtime metrics, including:

  • Operation duration (_elapsed_compute_)
  • Data processing statistics (_output_rows_, _bytes_read_)
  • Index effectiveness (_index_comparisons_, _indices_loaded_)
  • Resource utilization (_iops_, _requests_)

Together, these tools offer a comprehensive view of query performance, from planning to execution. Use explain_plan to verify your query structure and analyze_plan to measure and optimize actual performance.

Reading the Execution Plan

To demonstrate query performance analysis, we’ll use a table containing 1.2M rows sampled from the Wikipedia dataset . Initially, the table has no indices, allowing us to observe the impact of optimization.

Let’s examine a vector search query that:

  • Filters rows where identifier is between 0 and 1,000,000
  • Returns the top 100 matches
  • Projects specific columns: chunk_index, title, and identifier
python
# explain_plan
query_explain_plan = (
    table.search(query_embed)
    .where("identifier > 0 AND identifier < 1000000")
    .select(["chunk_index", "title", "identifier"])
    .limit(100)
    .explain_plan(True)
)
typescript
// explain_plan
const explainPlan = await table
    .search(queryEmbed)
    .where("identifier > 0 AND identifier < 1000000")
    .select(["chunk_index", "title", "identifier"])
    .limit(100)
    .explainPlan(true);

Execution Plan Components

The execution plan reveals the sequence of operations performed to execute your query. Let’s examine each component:

python
ProjectionExec: expr=[chunk_index@4 as chunk_index, title@5 as title, identifier@1 as identifier, _distance@3 as _distance]
  RemoteTake: columns="vector, identifier, _rowid, _distance, chunk_index, title"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=0, fetch=100
        FilterExec: _distance@3 IS NOT NULL
          SortExec: TopK(fetch=100), expr=[_distance@3 ASC NULLS LAST], preserve_partitioning=[false]
            KNNVectorDistance: metric=l2
              FilterExec: identifier@1 > 0 AND identifier@1 < 1000000
                LanceScan: uri=***, projection=[vector, identifier], row_id=true, row_addr=false, ordered=false

1. Base Layer (LanceScan)

  • Initial data scan loading only specified columns to minimize I/O
  • Unordered scan enabling parallel processing
python
LanceScan: 
- projection=[vector, identifier]
- row_id=true, row_addr=false, ordered=false

2. First Filter

  • Apply requested filter on identifier column
  • Reduces the number of vectors that need KNN computation
python
FilterExec: identifier@1 > 0 AND identifier@1 < 1000000
  • Computes L2 (Euclidean) distances between query vector and all vectors that passed the filter
python
KNNVectorDistance: metric=l2

4. Results Processing

  • Filters out null distance results
  • Sorts by distance and takes top 100 results
  • Processes in batches of 1024 for optimal memory usage
python
SortExec: TopK(fetch=100)
- expr=[_distance@3 ASC NULLS LAST]
- preserve_partitioning=[false]
FilterExec: _distance@3 IS NOT NULL
GlobalLimitExec: skip=0, fetch=100
CoalesceBatchesExec: target_batch_size=1024

5. Data Retrieval

  • RemoteTake is a key component of Lance’s I/O cache
  • Handles efficient data retrieval from remote storage locations
  • Fetches specific rows and columns needed for the final output
  • Optimizes network bandwidth by only retrieving required data
python
RemoteTake: columns="vector, identifier, _rowid, _distance, chunk_index, title"

6. Final Output

  • Returns only requested columns and maintains column ordering
python
ProjectionExec: expr=[chunk_index@4 as chunk_index, title@5 as title, identifier@1 as identifier, _distance@3 as _distance]

This plan demonstrates a basic search without index optimizations: it performs a full scan and filter before vector search.

Performance Analysis

Let’s use analyze_plan to run the query and analyze the query performance, which will help us identify potential bottlenecks:

python
# analyze_plan
query_analyze_plan = (
    table.search(query_embed)
    .where("identifier > 0 AND identifier < 1000000")
    .select(["chunk_index", "title", "identifier"])
    .limit(100)
    .analyze_plan()
)
typescript
// analyze_plan
const analyzePlan = await table
    .search(queryEmbed)
    .where("identifier > 0 AND identifier < 1000000")
    .select(["chunk_index", "title", "identifier"])
    .limit(100)
    .analyzePlan();

Performance Metrics Analysis

python
ProjectionExec: expr=[chunk_index@4 as chunk_index, title@5 as title, identifier@1 as identifier, _distance@3 as _distance], metrics=[output_rows=100, elapsed_compute=1.424µs]
    RemoteTake: columns="vector, identifier, _rowid, _distance, chunk_index, title", metrics=[output_rows=100, elapsed_compute=175.53097ms, output_batches=1, remote_takes=100]
      CoalesceBatchesExec: target_batch_size=1024, metrics=[output_rows=100, elapsed_compute=2.748µs]
        GlobalLimitExec: skip=0, fetch=100, metrics=[output_rows=100, elapsed_compute=1.819µs]
          FilterExec: _distance@3 IS NOT NULL, metrics=[output_rows=100, elapsed_compute=10.275µs]
            SortExec: TopK(fetch=100), expr=[_distance@3 ASC NULLS LAST], preserve_partitioning=[false], metrics=[output_rows=100, elapsed_compute=39.259451ms, row_replacements=546]
              KNNVectorDistance: metric=l2, metrics=[output_rows=1099508, elapsed_compute=56.783526ms, output_batches=1076]
                FilterExec: identifier@1 > 0 AND identifier@1 < 1000000, metrics=[output_rows=1099508, elapsed_compute=17.136819ms]
                  LanceScan: uri=***, projection=[vector, identifier], row_id=true, row_addr=false, ordered=false, metrics=[output_rows=1200000, elapsed_compute=21.348178ms, bytes_read=1852931072, iops=78, requests=78]

1. Data Loading (LanceScan)

  • Scanned 1,200,000 rows from the LanceDB table
  • Read 1.86GB of data in 78 I/O operations
  • Only loaded necessary columns (vector and identifier)
  • Unordered scan for parallel processing
  • Applied prefilter condition (identifier > 0 AND identifier < 1000000)
  • Reduced dataset from 1.2M to 1,099,508 rows
  • KNN search used L2 (Euclidean) distance metric
  • Vector comparisons processed in 1076 batches

3. Results Processing

  • KNN results sorted by distance (TopK with fetch=100)
  • Null distances filtered out
  • Batches coalesced to target size of 1024 rows
  • Additional columns fetched for final results
  • Remote take operation for 100 results
  • Final projection of required columns

Key Observations

  • Vector search is the primary bottleneck (1,099,508 vector comparisons)
  • Significant I/O overhead (1.86GB data read)
  • Full table scan due to lack of indices
  • Substantial optimization potential through proper index implementation

Optimized Query Execution

After creating vector and scalar indices, the execution plan shows:

python
ProjectionExec: expr=[chunk_index@3 as chunk_index, title@4 as title, identifier@2 as identifier, _distance@0 as _distance]
  RemoteTake: columns="_distance, _rowid, identifier, chunk_index, title"
    CoalesceBatchesExec: target_batch_size=1024
      GlobalLimitExec: skip=0, fetch=100
        SortExec: TopK(fetch=100), expr=[_distance@0 ASC NULLS LAST], preserve_partitioning=[false]
          ANNSubIndex: name=vector_idx, k=100, deltas=1
            ANNIvfPartition: uuid=83916fd5-fc45-4977-bad9-1f0737539bb9, nprobes=20, deltas=1
            ScalarIndexQuery: query=AND(identifier > 0,identifier < 1000000)

Optimized Plan Analysis

1. Scalar Index Query

python
ScalarIndexQuery: query=AND(identifier > 0,identifier < 1000000)
metrics=[
    output_rows=2
    index_comparisons=2,301,824
    indices_loaded=2
    output_batches=1
    parts_loaded=562
    elapsed_compute=86.979354ms
]
  • Range filter using scalar index
  • Only 2 index files and 562 scalar index parts loaded
  • 2.3M index comparisons for matches
python
ANNSubIndex: name=vector_idx, k=100, deltas=1
metrics=[
    output_rows=2,000
    index_comparisons=25,893
    indices_loaded=0
    output_batches=20
    parts_loaded=20
    elapsed_compute=111.849043ms
]
  • IVF index with 20 probes
  • Only 20 index parts loaded
  • 25,893 vector comparisons
  • 2,000 matching vectors

3. Results Processing

python
SortExec: TopK(fetch=100), expr=[_distance@0 ASC NULLS LAST], preserve_partitioning=[false]
GlobalLimitExec: skip=0, fetch=100
CoalesceBatchesExec: target_batch_size=1024
  • Sorts by distance
  • Limits to top 100 results
  • Batches into groups of 1024

4. Data Fetching

python
RemoteTake: columns="_distance, _rowid, identifier, chunk_index, title"
metrics=[output_rows=100, elapsed_compute=113.491859ms, output_batches=1, remote_takes=100]
  • Single output batch
  • One remote take per row

5. Final Projection

python
ProjectionExec: expr=[chunk_index@3 as chunk_index, title@4 as title, identifier@2 as identifier, _distance@0 as _distance]
  • Returns specified columns: chunk_index, title, identifier, and distance

Performance Improvements

1. Initial Data Access

python
ScalarIndexQuery metrics:
- indices_loaded=2
- parts_loaded=562
- output_batches=1
  • Before: Full table scan of 1.2M rows, 1.86GB data
  • After: Only 2 indices and 562 scalar index parts loaded
  • Benefit: Eliminated table scans for prefilter

2. Vector Search Efficiency

python
ANNSubIndex:
- index_comparisons=25,893
- indices_loaded=0
- parts_loaded=20
- output_batches=20
  • Before: L2 calculations on 1,099,508 vectors
  • After:
    • 99.8% reduction in vector comparisons
    • Decreased output batches from 1,076 to 20

3. Data Retrieval Optimization

python
RemoteTake:
- remote_takes=100
- output_batches=1
  • RemoteTake operation remains consistent

Performance Optimization Guide

1. Index Implementation

When to Create Indices

  • Columns used in WHERE clauses
  • Vector columns for similarity searches
  • Join columns used in merge_insert

Index Type Selection

Data Type Recommended Index Use Case
Vector IVF_PQ/IVF_HNSW_SQ Approximate nearest neighbor search
Scalar B-Tree Range queries and sorting
Categorical Bitmap Multi-value filters and set operations
List Label_list Multi-label classification and filtering

!!! info “Index Coverage Monitoring” Use table.index_stats() to monitor index coverage. A well-optimized table should have num_unindexed_rows ~ 0.

2. Query Plan Optimization

Common Patterns and Fixes

Plan Pattern Optimization
LanceScan with high bytes_read or iops Add missing index
Use select() to limit returned columns
Check whether the dataset has been compacted
Multiple sequential filters Reorder filter conditions

!!! note “Regular Performance Analysis” Regularly analyze your query plans to identify and address performance bottlenecks. The analyze_plan output provides detailed metrics to guide optimization efforts.

3. Getting Started with Optimization

For vector search performance:

  • Create ANN index on your vector column(s) as described in the index guide
  • If you often filter by metadata, create scalar indices on those columns