
You would need to install the integration via pip install llama-index-vector-stores-lancedb in order to use it.
You can run the below script to try it out :
import logging
import sys
# Uncomment to see debug logs
# logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
# logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout))
from llama_index.core import SimpleDirectoryReader, Document, StorageContext
from llama_index.core import VectorStoreIndex
from llama_index.vector_stores.lancedb import LanceDBVectorStore
import textwrap
import openai
openai.api_key = "sk-..."
documents = SimpleDirectoryReader("./data/your-data-dir/").load_data()
print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash)
## For LanceDB cloud :
# vector_store = LanceDBVectorStore(
# uri="db://db_name", # your remote DB URI
# api_key="sk_..", # lancedb cloud api key
# region="your-region" # the region you configured
# ...
# )
vector_store = LanceDBVectorStore(
uri="./lancedb", mode="overwrite", query_type="vector"
)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
index = VectorStoreIndex.from_documents(
documents, storage_context=storage_context
)
lance_filter = "metadata.file_name = 'paul_graham_essay.txt' "
retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter})
response = retriever.retrieve("What did the author do growing up?")Checkout Complete example here - LlamaIndex demo
For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the MetadataFilters class from LlamaIndex:
from llama_index.core.vector_stores import (
MetadataFilters,
FilterOperator,
FilterCondition,
MetadataFilter,
)
query_filters = MetadataFilters(
filters=[
MetadataFilter(
key="creation_date", operator=FilterOperator.EQ, value="2024-05-23"
),
MetadataFilter(
key="file_size", value=75040, operator=FilterOperator.GT
),
],
condition=FilterCondition.AND,
)For complete documentation, refer
here
. This example uses the colbert reranker. Make sure to install necessary dependencies for the reranker you choose.
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
vector_store._add_reranker(reranker)
query_engine = index.as_query_engine(
filters=query_filters,
vector_store_kwargs={
"query_type": "hybrid",
}
)
response = query_engine.query("How much did Viaweb charge per month?")In the above snippet, you can change/specify query_type again when creating the engine/retriever.
The exhaustive list of parameters for LanceDBVectorStore vector store are :
connection: Optional, lancedb.db.LanceDBConnection connection object to use. If not provided, a new connection will be created.uri: Optional[str], the uri of your database. Defaults to "/tmp/lancedb".table_name : Optional[str], Name of your table in the database. Defaults to "vectors".table: Optional[Any], lancedb.db.LanceTable object to be passed. Defaults to None.vector_column_name: Optional[Any], Column name to use for vector’s in the table. Defaults to 'vector'.doc_id_key: Optional[str], Column name to use for document id’s in the table. Defaults to 'doc_id'.text_key: Optional[str], Column name to use for text in the table. Defaults to 'text'.api_key: Optional[str], API key to use for LanceDB cloud database. Defaults to None.region: Optional[str], Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to None.nprobes : Optional[int], Set the number of probes to use. Only applicable if ANN index is created on the table else its ignored. Defaults to 20.refine_factor : Optional[int], Refine the results by reading extra elements and re-ranking them in memory. Defaults to None.reranker: Optional[Any], The reranker to use for LanceDB.
Defaults to None.overfetch_factor: Optional[int], The factor by which to fetch more results.
Defaults to 1.mode: Optional[str], The mode to use for LanceDB.
Defaults to "overwrite".query_type:Optional[str], The type of query to use for LanceDB.
Defaults to "vector".from_table(cls, table: lancedb.db.LanceTable) -> LanceDBVectorStore : (class method) Creates instance from lancedb table.
_add_reranker(self, reranker: lancedb.rerankers.Reranker) -> None : Add a reranker to an existing vector store.
from lancedb.rerankers import ColbertReranker
reranker = ColbertReranker()
vector_store._add_reranker(reranker)_table_exists(self, tbl_name: Optional[str] = None) -> bool : Returns True if tbl_name exists in database.
create_index(
self, scalar: Optional[bool] = False, col_name: Optional[str] = None, num_partitions: Optional[int] = 256, num_sub_vectors: Optional[int] = 96, index_cache_size: Optional[int] = None, metric: Optional[str] = “l2”,
) -> None : Creates a scalar(for non-vector cols) or a vector index on a table.
Make sure your vector column has enough data before creating an index on it.
add(self, nodes: List[BaseNode], **add_kwargs: Any, ) -> List[str] :
adds Nodes to the table
delete(self, ref_doc_id: str) -> None: Delete nodes using with node_ids.
delete_nodes(self, node_ids: List[str]) -> None : Delete nodes using with node_ids.
query(
self,
query: VectorStoreQuery,
**kwargs: Any,
) -> VectorStoreQueryResult:
Query index(VectorStoreIndex) for top k most similar nodes. Accepts llamaIndex VectorStoreQuery object.