This reranker uses OpenAI chat model to rerank the search results. You can use this reranker by passing OpenAI() to the rerank() method.
import numpy
import lancedb
from lancedb.embeddings import get_registry
from lancedb.pydantic import LanceModel, Vector
from lancedb.rerankers import OpenaiReranker
embedder = get_registry().get("sentence-transformers").create()
db = lancedb.connect("~/.lancedb")
class Schema(LanceModel):
text: str = embedder.SourceField()
vector: Vector(embedder.ndims()) = embedder.VectorField()
data = [
{"text": "hello world"},
{"text": "goodbye world"}
]
tbl = db.create_table("test", schema=Schema, mode="overwrite")
tbl.add(data)
reranker = OpenaiReranker()
# Run vector search with a reranker
result = tbl.search("hello").rerank(reranker=reranker).to_list()
# Run FTS search with a reranker
result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list()
# Run hybrid search with a reranker
tbl.create_fts_index("text", replace=True)
result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list()| Argument | Type | Default | Description |
|---|---|---|---|
model_name |
str |
"gpt-4-turbo-preview" |
The name of the reranker model to use. |
column |
str |
"text" |
The name of the column to use as input to the cross encoder model. |
return_score |
str | "relevance" |
Options are “relevance” or “all”. The type of score to return. If “relevance”, will return only the `_relevance_score. If “all” is supported, will return relevance score along with the vector and/or fts scores depending on query type. |
api_key |
str | None |
The API key to use. If None, will use the OPENAI_API_KEY environment variable. |
You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type:
return_score |
Status | Description |
|---|---|---|
relevance |
✅ Supported | Results only have the _relevance_score column. |
all |
❌ Not Supported | Results have vector(_distance) and FTS(score) along with Hybrid Search score(_relevance_score). |
return_score |
Status | Description |
|---|---|---|
relevance |
✅ Supported | Results only have the _relevance_score column. |
all |
✅ Supported | Results have vector(_distance) along with Hybrid Search score(_relevance_score). |
return_score |
Status | Description |
|---|---|---|
relevance |
✅ Supported | Results only have the _relevance_score column. |
all |
✅ Supported | Results have FTS(score) along with Hybrid Search score(_relevance_score). |