ImageBind Embedding Models We have support for imagebind model embeddings. You can download our version of the packaged model via - pip install imagebind-packaged==0.1.2. This function is registered as imagebind and supports Audio, Video and Text modalities(extending to Thermal,Depth,IMU data): Parameter Type Default Value Description name str "imagebind_huge" Name of the model. device str "cpu" The device to run the model on. Can be "cpu" or "gpu". normalize bool False set to True to normalize your inputs before model ingestion. Below is an example demonstrating how the API works: import lancedb from lancedb.pydantic import LanceModel, Vector from lancedb.embeddings import get_registry db = lancedb.connect(tmp_path) func = get_registry().get("imagebind").create() class ImageBindModel(LanceModel): text: str image_uri: str = func.SourceField() audio_path: str vector: Vector(func.ndims()) = func.VectorField() # add locally accessible image paths text_list=["A dog.", "A car", "A bird"] image_paths=[".assets/dog_image.jpg", ".assets/car_image.jpg", ".assets/bird_image.jpg"] audio_paths=[".assets/dog_audio.wav", ".assets/car_audio.wav", ".assets/bird_audio.wav"] # Load data inputs = [ {"text": a, "audio_path": b, "image_uri": c} for a, b, c in zip(text_list, audio_paths, image_paths) ] #create table and add data table = db.create_table("img_bind", schema=ImageBindModel) table.add(inputs) Now, we can search using any modality: image search query_image = "./assets/dog_image2.jpg" #download an image and enter that path here actual = table.search(query_image).limit(1).to_pydantic(ImageBindModel)[0] print(actual.text == "dog") audio search query_audio = "./assets/car_audio2.wav" #download an audio clip and enter path here actual = table.search(query_audio).limit(1).to_pydantic(ImageBindModel)[0] print(actual.text == "car") Text search You can add any input query and fetch the result as follows: query = "an animal which flies and tweets" actual = table.search(query).limit(1).to_pydantic(ImageBindModel)[0] print(actual.text == "bird") If you have any questions about the embeddings API, supported models, or see a relevant model missing, please raise an issue on GitHub.