Llama-Index Quick start You would need to install the integration via pip install llama-index-vector-stores-lancedb in order to use it. You can run the below script to try it out : import logging import sys # Uncomment to see debug logs # logging.basicConfig(stream=sys.stdout, level=logging.DEBUG) # logging.getLogger().addHandler(logging.StreamHandler(stream=sys.stdout)) from llama_index.core import SimpleDirectoryReader, Document, StorageContext from llama_index.core import VectorStoreIndex from llama_index.vector_stores.lancedb import LanceDBVectorStore import textwrap import openai openai.api_key = "sk-..." documents = SimpleDirectoryReader("./data/your-data-dir/").load_data() print("Document ID:", documents[0].doc_id, "Document Hash:", documents[0].hash) ## For LanceDB cloud : # vector_store = LanceDBVectorStore( # uri="db://db_name", # your remote DB URI # api_key="sk_..", # lancedb cloud api key # region="your-region" # the region you configured # ... # ) vector_store = LanceDBVectorStore( uri="./lancedb", mode="overwrite", query_type="vector" ) storage_context = StorageContext.from_defaults(vector_store=vector_store) index = VectorStoreIndex.from_documents( documents, storage_context=storage_context ) lance_filter = "metadata.file_name = 'paul_graham_essay.txt' " retriever = index.as_retriever(vector_store_kwargs={"where": lance_filter}) response = retriever.retrieve("What did the author do growing up?") Checkout Complete example here - LlamaIndex demo Filtering For metadata filtering, you can use a Lance SQL-like string filter as demonstrated in the example above. Additionally, you can also filter using the MetadataFilters class from LlamaIndex: from llama_index.core.vector_stores import ( MetadataFilters, FilterOperator, FilterCondition, MetadataFilter, ) query_filters = MetadataFilters( filters=[ MetadataFilter( key="creation_date", operator=FilterOperator.EQ, value="2024-05-23" ), MetadataFilter( key="file_size", value=75040, operator=FilterOperator.GT ), ], condition=FilterCondition.AND, ) Hybrid Search For complete documentation, refer here. This example uses the colbert reranker. Make sure to install necessary dependencies for the reranker you choose. from lancedb.rerankers import ColbertReranker reranker = ColbertReranker() vector_store._add_reranker(reranker) query_engine = index.as_query_engine( filters=query_filters, vector_store_kwargs={ "query_type": "hybrid", } ) response = query_engine.query("How much did Viaweb charge per month?") In the above snippet, you can change/specify query_type again when creating the engine/retriever. API reference The exhaustive list of parameters for LanceDBVectorStore vector store are : - connection: Optional, lancedb.db.LanceDBConnection connection object to use. If not provided, a new connection will be created. - uri: Optional[str], the uri of your database. Defaults to "/tmp/lancedb". - table_name : Optional[str], Name of your table in the database. Defaults to "vectors". - table: Optional[Any], lancedb.db.LanceTable object to be passed. Defaults to None. - vector_column_name: Optional[Any], Column name to use for vector's in the table. Defaults to 'vector'. - doc_id_key: Optional[str], Column name to use for document id's in the table. Defaults to 'doc_id'. - text_key: Optional[str], Column name to use for text in the table. Defaults to 'text'. - api_key: Optional[str], API key to use for LanceDB cloud database. Defaults to None. - region: Optional[str], Region to use for LanceDB cloud database. Only for LanceDB Cloud, defaults to None. - nprobes : Optional[int], Set the number of probes to use. Only applicable if ANN index is created on the table else its ignored. Defaults to 20. - refine_factor : Optional[int], Refine the results by reading extra elements and re-ranking them in memory. Defaults to None. - reranker: Optional[Any], The reranker to use for LanceDB. Defaults to None. - overfetch_factor: Optional[int], The factor by which to fetch more results. Defaults to 1. - mode: Optional[str], The mode to use for LanceDB. Defaults to "overwrite". - query_type:Optional[str], The type of query to use for LanceDB. Defaults to "vector". Methods from_table(cls, table: lancedb.db.LanceTable) -> LanceDBVectorStore : (class method) Creates instance from lancedb table. _add_reranker(self, reranker: lancedb.rerankers.Reranker) -> None : Add a reranker to an existing vector store. Usage : from lancedb.rerankers import ColbertReranker reranker = ColbertReranker() vector_store._add_reranker(reranker) _table_exists(self, tbl_name: Optional[str] = None) -> bool : Returns True if tbl_name exists in database. create_index( self, scalar: Optional[bool] = False, col_name: Optional[str] = None, num_partitions: Optional[int] = 256, num_sub_vectors: Optional[int] = 96, index_cache_size: Optional[int] = None, metric: Optional[str] = "l2", ) -> None : Creates a scalar(for non-vector cols) or a vector index on a table. Make sure your vector column has enough data before creating an index on it. add(self, nodes: List[BaseNode], **add_kwargs: Any, ) -> List[str] : adds Nodes to the table delete(self, ref_doc_id: str) -> None: Delete nodes using with node_ids. delete_nodes(self, node_ids: List[str]) -> None : Delete nodes using with node_ids. query( self, query: VectorStoreQuery, **kwargs: Any, ) -> VectorStoreQueryResult: Query index(VectorStoreIndex) for top k most similar nodes. Accepts llamaIndex VectorStoreQuery object.