Pydantic Pydantic is a data validation library in Python. LanceDB integrates with Pydantic for schema inference, data ingestion, and query result casting. Using LanceModel, users can seamlessly integrate Pydantic with the rest of the LanceDB APIs. import lancedb from lancedb.pydantic import Vector, LanceModel class PersonModel(LanceModel): name: str age: int vector: Vector(2) url = "./example" db = lancedb.connect(url) table = db.create_table("person", schema=PersonModel) table.add( [ PersonModel(name="bob", age=1, vector=[1.0, 2.0]), PersonModel(name="alice", age=2, vector=[3.0, 4.0]), ] ) assert table.count_rows() == 2 person = table.search([0.0, 0.0]).limit(1).to_pydantic(PersonModel) assert person[0].name == "bob" Vector Field LanceDB provides a Vector(dim) method to define a vector Field in a Pydantic Model. lancedb.pydantic.Vector Vector(dim: int, value_type: DataType = pa.float32(), nullable: bool = True) -> Type[FixedSizeListMixin] Pydantic Vector Type. Warning Experimental feature. Parameters: dim (int) – The dimension of the vector. value_type (DataType, default: float32() ) – The value type of the vector, by default pa.float32() nullable (bool, default: True ) – Whether the vector is nullable, by default it is True. Examples: >>> import pydantic >>> from lancedb.pydantic import Vector ... >>> class MyModel(pydantic.BaseModel): ... id: int ... url: str ... embeddings: Vector(768) >>> schema = pydantic_to_schema(MyModel) >>> assert schema == pa.schema([ ... pa.field("id", pa.int64(), False), ... pa.field("url", pa.utf8(), False), ... pa.field("embeddings", pa.list_(pa.float32(), 768)) ... ]) Source code in lancedb/pydantic.py 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152def Vector( dim: int, value_type: pa.DataType = pa.float32(), nullable: bool = True ) -> Type[FixedSizeListMixin]: """Pydantic Vector Type. !!! warning Experimental feature. Parameters ---------- dim : int The dimension of the vector. value_type : pyarrow.DataType, optional The value type of the vector, by default pa.float32() nullable : bool, optional Whether the vector is nullable, by default it is True. Examples -------- >>> import pydantic >>> from lancedb.pydantic import Vector ... >>> class MyModel(pydantic.BaseModel): ... id: int ... url: str ... embeddings: Vector(768) >>> schema = pydantic_to_schema(MyModel) >>> assert schema == pa.schema([ ... pa.field("id", pa.int64(), False), ... pa.field("url", pa.utf8(), False), ... pa.field("embeddings", pa.list_(pa.float32(), 768)) ... ]) """ # TODO: make a public parameterized type. class FixedSizeList(list, FixedSizeListMixin): def __repr__(self): return f"FixedSizeList(dim={dim})" @staticmethod def nullable() -> bool: return nullable @staticmethod def dim() -> int: return dim @staticmethod def value_arrow_type() -> pa.DataType: return value_type @classmethod def __get_pydantic_core_schema__( cls, _source_type: Any, _handler: pydantic.GetCoreSchemaHandler ) -> CoreSchema: return core_schema.no_info_after_validator_function( cls, core_schema.list_schema( min_length=dim, max_length=dim, items_schema=core_schema.float_schema(), ), ) @classmethod def __get_validators__(cls) -> Generator[Callable, None, None]: yield cls.validate # For pydantic v1 @classmethod def validate(cls, v): if not isinstance(v, (list, range, np.ndarray)) or len(v) != dim: raise TypeError("A list of numbers or numpy.ndarray is needed") return cls(v) if PYDANTIC_VERSION.major < 2: @classmethod def __modify_schema__(cls, field_schema: Dict[str, Any]): field_schema["items"] = {"type": "number"} field_schema["maxItems"] = dim field_schema["minItems"] = dim return FixedSizeList Type Conversion LanceDB automatically convert Pydantic fields to Apache Arrow DataType. Current supported type conversions: Pydantic Field Type PyArrow Data Type int pyarrow.int64 float pyarrow.float64 bool pyarrow.bool str pyarrow.utf8() list pyarrow.List BaseModel pyarrow.Struct Vector(n) pyarrow.FixedSizeList(float32, n) LanceDB supports to create Apache Arrow Schema from a Pydantic BaseModel via pydantic_to_schema() method. lancedb.pydantic.pydantic_to_schema pydantic_to_schema(model: Type[BaseModel]) -> Schema Convert a Pydantic Model to a PyArrow Schema. Parameters: model (Type[BaseModel]) – The Pydantic BaseModel to convert to Arrow Schema. Returns: Schema – The Arrow Schema Examples: >>> from typing import List, Optional >>> import pydantic >>> from lancedb.pydantic import pydantic_to_schema, Vector >>> class FooModel(pydantic.BaseModel): ... id: int ... s: str ... vec: Vector(1536) # fixed_size_list<item: float32>[1536] ... li: List[int] ... >>> schema = pydantic_to_schema(FooModel) >>> assert schema == pa.schema([ ... pa.field("id", pa.int64(), False), ... pa.field("s", pa.utf8(), False), ... pa.field("vec", pa.list_(pa.float32(), 1536)), ... pa.field("li", pa.list_(pa.int64()), False), ... ]) Source code in lancedb/pydantic.py 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296def pydantic_to_schema(model: Type[pydantic.BaseModel]) -> pa.Schema: """Convert a [Pydantic Model][pydantic.BaseModel] to a [PyArrow Schema][pyarrow.Schema]. Parameters ---------- model : Type[pydantic.BaseModel] The Pydantic BaseModel to convert to Arrow Schema. Returns ------- pyarrow.Schema The Arrow Schema Examples -------- >>> from typing import List, Optional >>> import pydantic >>> from lancedb.pydantic import pydantic_to_schema, Vector >>> class FooModel(pydantic.BaseModel): ... id: int ... s: str ... vec: Vector(1536) # fixed_size_list<item: float32>[1536] ... li: List[int] ... >>> schema = pydantic_to_schema(FooModel) >>> assert schema == pa.schema([ ... pa.field("id", pa.int64(), False), ... pa.field("s", pa.utf8(), False), ... pa.field("vec", pa.list_(pa.float32(), 1536)), ... pa.field("li", pa.list_(pa.int64()), False), ... ]) """ fields = _pydantic_model_to_fields(model) return pa.schema(fields)