Ollama Embedding Model Generate embeddings via the ollama python library. More details: Ollama docs on embeddings Ollama blog on embeddings Parameter Type Default Value Description name str nomic-embed-text The name of the model. host str http://localhost:11434 The Ollama host to connect to. options ollama.Options or dict None Additional model parameters listed in the documentation for the Modelfile such as temperature. keep_alive float or str "5m" Controls how long the model will stay loaded into memory following the request. ollama_client_kwargs dict {} kwargs that can be past to the ollama.Client. import lancedb from lancedb.pydantic import LanceModel, Vector from lancedb.embeddings import get_registry db = lancedb.connect("/tmp/db") func = get_registry().get("ollama").create(name="nomic-embed-text") class Words(LanceModel): text: str = func.SourceField() vector: Vector(func.ndims()) = func.VectorField() table = db.create_table("words", schema=Words, mode="overwrite") table.add([ {"text": "hello world"}, {"text": "goodbye world"} ]) query = "greetings" actual = table.search(query).limit(1).to_pydantic(Words)[0] print(actual.text)