Voyage AI Reranker in LanceDB Voyage AI provides cutting-edge embedding and rerankers. This reranker uses the VoyageAI API to rerank the search results. You can use this reranker by passing VoyageAIReranker() to the rerank() method. Note that you'll either need to set the VOYAGE_API_KEY environment variable or pass the api_key argument to use this reranker. Note Supported Query Types: Hybrid, Vector, FTS import numpy import lancedb from lancedb.embeddings import get_registry from lancedb.pydantic import LanceModel, Vector from lancedb.rerankers import VoyageAIReranker embedder = get_registry().get("sentence-transformers").create() db = lancedb.connect("~/.lancedb") class Schema(LanceModel): text: str = embedder.SourceField() vector: Vector(embedder.ndims()) = embedder.VectorField() data = [ {"text": "hello world"}, {"text": "goodbye world"} ] tbl = db.create_table("test", schema=Schema, mode="overwrite") tbl.add(data) reranker = VoyageAIReranker(model_name="rerank-2") # Run vector search with a reranker result = tbl.search("hello").rerank(reranker=reranker).to_list() # Run FTS search with a reranker result = tbl.search("hello", query_type="fts").rerank(reranker=reranker).to_list() # Run hybrid search with a reranker tbl.create_fts_index("text", replace=True) result = tbl.search("hello", query_type="hybrid").rerank(reranker=reranker).to_list() Accepted Arguments Argument Type Default Description model_name str None The name of the reranker model to use. Available models are: rerank-2, rerank-2-lite column str "text" The name of the column to use as input to the cross encoder model. top_n str None The number of results to return. If None, will return all results. api_key str None The API key for the Voyage AI API. If not provided, the VOYAGE_API_KEY environment variable is used. return_score str "relevance" Options are "relevance" or "all". The type of score to return. If "relevance", will return only the `_relevance_score. If "all" is supported, will return relevance score along with the vector and/or fts scores depending on query type truncation bool None Whether to truncate the input to satisfy the "context length limit" on the query and the documents. Supported Scores for each query type You can specify the type of scores you want the reranker to return. The following are the supported scores for each query type: Hybrid Search return_score Status Description relevance โ Supported Returns only have the _relevance_score column all โ Not Supported Returns have vector(_distance) and FTS(score) along with Hybrid Search score(_relevance_score) Vector Search return_score Status Description relevance โ Supported Returns only have the _relevance_score column all โ Supported Returns have vector(_distance) along with Hybrid Search score(_relevance_score) FTS Search return_score Status Description relevance โ Supported Returns only have the _relevance_score column all โ Supported Returns have FTS(score) along with Hybrid Search score(_relevance_score)